2,409 research outputs found

    Amyloid imaging for dementia in clinical practice.

    Get PDF
    In vivo imaging of brain amyloid using positron emission tomography (PET) scanning is widely used in research studies of dementia, with three amyloid PET ligands being licenced for clinical use. The main clinical use of PET is to help confirm or exclude the likely diagnosis of Alzheimer's disease in challenging cases, where diagnostic uncertainty remains after current clinical and investigative work up. Whilst diagnostically valuable in such select cases, much wider clinical adoption, especially for very early disease, will be limited by both cost and the lack of a currently effective disease-modifying treatment that requires such early case identification. The use of amyloid imaging to appropriately stratify subjects for prognostic studies and therapeutic trials should increase the efficiency and potentially shorten the time of such studies, and its use combined with other biomarkers and genetics will likely lead to new ways of defining and classifying the dementias

    A spatial covariance (123)I-5IA-85380 SPECT study of α4β2 nicotinic receptors in Alzheimer's disease

    Get PDF
    Alzheimer's disease (AD) is characterized by widespread degeneration of cholinergic neurons, particularly in the basal forebrain. However, the pattern of these deficits and relationship with known brain networks is unknown. In this study, we sought to clarify this and used 123I-5-iodo-3-[2(S)-2-azetidinylmethoxy] pyridine (1235IA-85380) single photon emission computed tomography to investigate spatial covariance of α4β2 nicotinic acetylcholine receptors in AD and healthy controls. Thirteen AD and 16 controls underwent 1235IA-85380 and regional cerebral blood flow (99mTc-exametazime) single photon emission computed tomography scanning. We applied voxel principal component (PC) analysis, generating series of principal component images representing common intercorrelated voxels across subjects. Linear regression generated specific α4β2 and regional cerebral blood flow covariance patterns that differentiated AD from controls. The α4β2 pattern showed relative decreased uptake in numerous brain regions implicating several networks including default mode, salience, and Papez hubs. Thus, as well as basal forebrain and brainstem cholinergic system dysfunction, cholinergic deficits mediated through nicotinic acetylcholine receptors could be evident within key networks in AD. These findings may be important for the pathophysiology of AD and its associated cognitive and behavioral phenotypes

    Visual cortical excitability in dementia with Lewy bodies.

    Get PDF
    Alterations in the visual system may underlie visual hallucinations in dementia with Lewy bodies (DLB). However, cortical excitability as measured by transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) activation of lower visual areas (V1-3) to visual stimuli appear normal in DLB. We explored the relationship between TMS-determined phosphene threshold and fMRI-related visual activation and found a positive relationship between the two in controls but a negative one in DLB. This double dissociation suggests a loss of inhibition in the visual system in DLB, which may predispose individuals to visual dysfunction and visual hallucinations.The research was funded by an Intermediate Clinical Fellowship to J.-P.T. (WT088441MA) and also supported by the National Institute for Health Research (NIHR) Newcastle Biomedical Research Unit based at Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.This is the final version of the article. It first appeared from the Royal College of Psychiatrists via http://dx.doi.org/10.1192/bjp.bp.114.15273

    Resting-State Functional Connectivity in Late-Life Depression: Higher Global Connectivity and More Long Distance Connections

    Full text link
    Functional magnetic resonance imaging recordings in the resting-state (RS) from the human brain are characterized by spontaneous low-frequency fluctuations in the blood oxygenation level dependent signal that reveal functional connectivity (FC) via their spatial synchronicity. This RS study applied network analysis to compare FC between late-life depression (LLD) patients and control subjects. Raw cross-correlation matrices (CM) for LLD were characterized by higher FC. We analyzed the small-world (SW) and modular organization of these networks consisting of 110 nodes each as well as the connectivity patterns of individual nodes of the basal ganglia. Topological network measures showed no significant differences between groups. The composition of top hubs was similar between LLD and control subjects, however in the LLD group posterior medial-parietal regions were more highly connected compared to controls. In LLD, a number of brain regions showed connections with more distant neighbors leading to an increase of the average Euclidean distance between connected regions compared to controls. In addition, right caudate nucleus connectivity was more diffuse in LLD. In summary, LLD was associated with overall increased FC strength and changes in the average distance between connected nodes, but did not lead to global changes in SW or modular organization

    Hydrodynamic mean field solutions of 1D exclusion processes with spatially varying hopping rates

    Full text link
    We analyze the open boundary partially asymmetric exclusion process with smoothly varying internal hopping rates in the infinite-size, mean field limit. The mean field equations for particle densities are written in terms of Ricatti equations with the steady-state current JJ as a parameter. These equations are solved both analytically and numerically. Upon imposing the boundary conditions set by the injection and extraction rates, the currents JJ are found self-consistently. We find a number of cases where analytic solutions can be found exactly or approximated. Results for JJ from asymptotic analyses for slowly varying hopping rates agree extremely well with those from extensive Monte Carlo simulations, suggesting that mean field currents asymptotically approach the exact currents in the hydrodynamic limit, as the hopping rates vary slowly over the lattice. If the forward hopping rate is greater than or less than the backward hopping rate throughout the entire chain, the three standard steady-state phases are preserved. Our analysis reveals the sensitivity of the current to the relative phase between the forward and backward hopping rate functions.Comment: 12 pages, 4 figure

    Studies of the Use of Pervious Fence for Streambank Revetment

    Get PDF
    This report contains the results of a field and laboratory study of a pervious fence used as revetment for the banks of an open channel carrying sediment laden now. The study was made at the Cooperative Hydraulic Laboratory of the Soil Conservation Service (U.s. Department of Agriculture) and the California Institute of Technology at Pasadena, California during two periods: October 1944 to May 1945 and June 1946 to June 1947

    The segregated connectome of late-life depression: a combined cortical thickness and structural covariance analysis.

    Get PDF
    Late-life depression (LLD) has been associated with both generalized and focal neuroanatomical changes including gray matter atrophy and white matter abnormalities. However, previous literature has not been consistent and, in particular, its impact on the topology organization of brain networks remains to be established. In this multimodal study, we first examined cortical thickness, and applied graph theory to investigate structural covariance networks in LLD. Thirty-three subjects with LLD and 25 controls underwent T1-weighted, fluid-attenuated inversion recovery and clinical assessments. Freesurfer was used to perform vertex-wise comparisons of cortical thickness, whereas the Graph Analysis Toolbox (GAT) was implemented to construct and analyze the structural covariance networks. LLD showed a trend of lower thickness in the left insular region (p < 0.001 uncorrected). In addition, the structural network of LLD was characterized by greater segregation, particularly showing higher transitivity (i.e., measure of clustering) and modularity (i.e., tendency for a network to be organized into subnetworks). It was also less robust against random failure and targeted attacks. Despite relative cortical preservation, the topology of the LLD network showed significant changes particularly in segregation. These findings demonstrate the potential for graph theoretical approaches to complement conventional structural imaging analyses and provide novel insights into the heterogeneous etiology and pathogenesis of LLD.This work was supported by the NIHR Biomedical Research Unit in Dementia and the Biomedical Research Centre awarded to Cambridge University Hospitals NHS Foundation Trust and the University of Cambridge, and the NIHR Biomedical Research Unit in Dementia and the Biomedical Research Centre awarded to Newcastle upon Tyne Hospitals NHS Foundation Trust and the Newcastle University. Elijah Mak was in receipt of a Gates Cambridge, PhD studentship.This is the author accepted manuscript. It first appeared from Elsevier at http://dx.doi.org/10.1016/j.neurobiolaging.2016.08.013
    • …
    corecore